ポタージュを垂れ流す。

マイペースこうしん

三次方程式の1つの解を別の解で表現する

お題

有理数係数三次方程式x^3+ax^2+bx+c=0の解を\alpha,\beta,\gammaとしたとき,\beta,\gamma有理数係数の\alphaの二次式で表すことができる.

証明的なやつ

\alpha>\beta>\gammaとしてよい.
解と係数の関係より,
\alpha+\beta+\gamma=-a\alpha\beta+\beta\gamma+\gamma\alpha=b
よって
\beta+\gamma=-\alpha-a\beta\gamma=\alpha^2+a\alpha+b
これを用いて
(\alpha-\beta)(\alpha-\gamma)
=\alpha^2-\alpha(\beta+\gamma)+\beta\gamma
=\alpha^2-\alpha(\beta+\gamma)-\alpha(\beta+\gamma)+b
=\alpha^2-2\alpha(-\alpha-a)+b
=3\alpha^2+2a\alpha+b・・・☆
また,
(\beta-\gamma)^2
=(\beta+\gamma)^2-4\beta\gamma
=(-\alpha-a)^2-4(\alpha^2 a\alpha+b)
=-3\alpha^2-2a\alpha+a^2-4b
となるから,
(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)^2
=(3\alpha^2+2a\alpha+b)(-3\alpha^2-2a\alpha+a^2-4b)
=-9\alpha^4-12a\alpha^3+(-a^2-15b)\alpha^2+(2a^3-10ab)\alpha+a^2 b-4b^2
=-9\alpha(-a\alpha^2-b\alpha-c)-12a(-a\alpha^2-b\alpha-c)+(-a^2-15b)\alpha^2+(2a^3-10ab)\alpha+a^2 b-4b^2
=9a\alpha^3+(11a^2-6b)\alpha^2+(2a^3+2ab+9c)\alpha+(a^2 b-4b^2+12ac)
=9a(-a\alpha^2-b\alpha-c)+(11a^2-6b)\alpha^2+(2a^3+2ab+9c)\alpha+(a^2 b-4b^2+12ac)
=2(a^2-3b)\alpha^2+(2a^3-7ab+9c)\alpha+(a^2 b-4b^2+3ac)
なお,途中で
\alpha^3=-a\alpha^2-b\alpha-c\Leftrightarrow\alpha^3=-a\alpha^2-b\alpha-c
の関係を用いた.また,
x^3+ax^2+bx+c=0\displaystyle x=X-\frac{a}{3}を代入すると
\displaystyle (X-\frac{a}{3})^3+a(X-\frac{a}{3})^2+b(X-\frac{a}{3})+c=0
\displaystyle X^3-aX^2+\frac{a^2}{3}X-\frac{a^3}{27}+aX^2-\frac{2a^2}{3}X+\frac{a^3}{9}+cX-\frac{ab}{3a}+c =0
\displaystyle X^3+(b-\frac{a^2}{2})X+\frac{2a^3}{27}-\frac{ab}{3}+c=0
ここで,\displaystyle p=b-\frac{a^2}{3},q=\frac{2a^3}{27}-\frac{ab}{3}+cとすれば,これは
X^3+pX+q=0
となる.この方程式の3解をA,B,Cとすれば,解と係数の関係より
A+B+C=0,AB+BC+CA=p,ABC=-q
となる.
(A-B)(A-C)=3A^2+p
(☆の文字をそれぞれ対応させる)
同様にして
(B-A)(B-C)=3B^2+p
(C-A)(C-B)=3C^2+p
また,A-B,A-C,B-A,B-C,C-A,C-Bは,\displaystyle x=X-\frac{a}{3}と置いたことにより,それぞれ\alpha-\beta,\alpha-\gamma,\beta-\alpha,\beta-\gamma,\gamma-\alpha,\gamma-\betaに対応するので,
(\alpha-\beta)(\alpha-\gamma)=3A^2+p
(\beta-\alpha)(\beta-\gamma)=3B^2+p
(\gamma-\alpha)(\gamma-\beta)=3C^2+p
(\alpha-\beta)^2 (\alpha-\gamma)^2 (\beta-\gamma)^2
=-(\alpha-\beta)(\alpha-\gamma)\cdot(\beta-\alpha)(\beta-\gamma)\cdot(\gamma-\alpha)(\gamma-\beta)
=-(3A^2+p)(3B^2+p)(3C^2+p)
=-( p^3+3(A^2+B^2+C^2)p^2+9(A^2 B^2 + B^2 C^2 + C^2 A^2)p+27A^2 B^2 C^2) =-p^3+6p^3-9p^3-27q^2
=-4p^3 -27q^2
ここで
A^2 B^2 + B^2 C^2 + C^2 A^2
=(AB+BC+CA)^2-2ABC(A+B+C)
=p^2
A^2 +B^2 +C^2
=(A+B+C)^2 -2(AB+BC+CA)
=-2p
であることを用いた.
\displaystyle p=b-\frac{a^2}{3},q=\frac{2a^3}{27}-\frac{ab}{3}+cとおいたので,元に戻すと
(\alpha-\beta)^2 (\alpha-\gamma)^2 (\beta-\gamma)^2
\displaystyle =-4(b-\frac{a^2}{3})^3 -27(\frac{2a^3}{27}-\frac{ab}{3}+c)^2
=a^2 b^2 -4a^3 c +18abc -4b^3-27c^2
よって,
(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)
=\sqrt{a^2 b^2 -4a^3 c +18abc -4b^3-27c^2}
また,
\beta-\gamma=\displaystyle \frac{(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)^2}{(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)}
\displaystyle =\frac{2(a^2-3b)\alpha^2+(2a^3-7ab+9c)\alpha+(a^2 b-4b^2+3ac)}{\sqrt{a^2 b^2 -4a^3 c +18abc -4b^3-27c^2}}
これと
\beta+\gamma=-\alpha-a
を連立すると,
\displaystyle \beta=-\frac{1}{2}(\alpha+a)-\frac{2(a^2-3b)\alpha^2+(2a^3-7ab+9c)\alpha+(a^2 b-4b^2+3ac)}{\sqrt{a^2 b^2 -4a^3 c +18abc -4b^3-27c^2}}
\displaystyle \gamma=-\frac{1}{2}(\alpha+a)+\frac{2(a^2-3b)\alpha^2+(2a^3-7ab+9c)\alpha+(a^2 b-4b^2+3ac)}{\sqrt{a^2 b^2 -4a^3 c +18abc -4b^3-27c^2}}
となって,確かに\beta,\gamma有理数係数の\alphaの二次式で表すことができた.

補足とか

そもそも書こうとしたきっかけはx^3-3x+1=0とかで\beta,\gamma\alphaを用いて表すとかだったんですけど,初めて解いた時に判別式の値ありきな解き方しちゃって一般的に考えれないのかって思ったのが始まりなんですけど,ちゃんと一般的に表せましたね. 三次方程式ax^3+bx^2+cx+d=0の判別式DD=a^4 (\alpha-\beta)^2 (\alpha-\gamma)^2 (\beta-\gamma)^2と表せるんですけど,ここではa→1,b→a,c→b,d→cとして,色々やったらD=a^2 b^2 -4a^3 c +18abc -4b^3-27c^2が出てきたということです.途中で(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)つまり\sqrt{D}を使ってるんですけど,有理数係数で表せるのは\sqrt{D}が実数になる場合だけですね.
あとまあ解が巡回するとかどうとかそういうのもあったりするー.(書こうと思ったけどなんかめんどくなった)